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Abstract

We study a diffusive energy-balance climate model,

governed by a nonlinear parabolic partial differential

equation. Three positive steady-state solutions of this

equation are found; they correspond to three possible

climates of our planet: an interglacial (nearly identical

to the present climate), a glacial, and a completely ice-

covered earth. We consider also models similar to the main

one studied, and determine the number of their steady states.

All the models have albedo continuously varying with latitude

and temperature, and entirely diffusive horizontal heat

transfer. The diffusion is taken to be nonlinear as well as

linear.

We investigate the stability under small perturbations

of the main model's climates. A stability criterion is

derived, and its application shows that the "present climate"

and the "deep freeze" are stable, whereas the model's glacial

is unstable. A variational principle is introduced to confirm

the results of this stability analysis.

We examine the dependence of the number of steady states

and of their stability on the average solar radiation. The

main result is that for a sufficient decrease in solar radia-

tion (about 2 percent) the glacial and interglacial solutions

disappear, leaving the ice-covered earth as the only possible

climate.
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1. Introduction

The concept of a climate is one of those abstractions

which appears to be self-evident to the layman, but is by

no means well defined scientifically. The intuitive idea

of a climate has two aspects:

(a) the most important features of atmospheric phenomena;

(b) the average behavior of these phenomena over a suitably

long time interval and over sufficiently large areas.

The difficulties start when one tries to give a precise

meaning to the key words "most important", "suitably long"

and "suitably large". We start with "suitably long";

clearly, a year is an absolute lower bound for a reasonable

averaging time interval, since daily and seasonal variations

should be excluded. To decide over how much longer than a

year the averaging should be performed, one has to look at

the record. There are three kinds of records: instrumental,

the length of which is of the order of hundreds of years,

historical, of the order of thousands of years, and geological,

of the order of hundreds of thousands of years. These

records show that features of the atmosphere change on all

the time scales represented in them (e.g.,Robinson, 1971).

Thus it would appear at first that it is not possible to

distinguish between "fast" variations in yearly averages,

which should be averaged out when defining a climate, and

"slow" variations, which should be considered as "changes
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of climate". Still, the geological record seems to indicate

that the transitions between considerably colder periods (ice

ages or glacials) and warmer periods ("normal" climates or

interglacials) occurred over time spans about ten times

shorter than the duration of the relatively steady cold or

warm weather respectively. This suggests what we shall adopt

here as our operative definition of climate, viz., the preva-

lence of either warm weather (as we experience it today) or

of cold weather (to mean a difference of the order of ten

degrees centigrade in yearly average below the one recorded

in the present).

We turn now to the question of which features of

atmospheric phenomena are "most important". Certainly tempera-

ture is one of them, not only because its changes left deep

traces in the geological record (glaciations in temperate

zones, pluviations in the tropics -- SMIC, 1971), but also

because it affects all conditions of life and because it is

directly linked to the major thermodynamic and dynamic

processes in the atmosphere which determine climate and

its changes. Also, humidity, wind direction and intensity,

cloud amount, precipitation, all play a major

role in determining what is perceived as weather and hence

should be time-averaged (and, possibly, space-averaged)

into climate. Moreover, it is not only the averages of

these quantities, but their day-to-night and season-to-season

contrast that enters our intuitive concept of a climate.
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Thus, at least their variance should be included in a more

complete mathematical model for climatology.

In this article we shall treat a very simple model,

based on the work of Sellers (1969) and of Schneider

and Gal-Chen (1973); we hope that the results will in

themselves be of some significance for climate theory, as

well as providing insights for devising and analyzing more

complex models.

In Section 2 the model to be studied is described;

the physical principles on which it is based, as well as

the empirical data it uses are discussed.

In Section 3 we discuss the work of different authors

on similar models; the similarities and differences between

their results are pointed out and the issues arising from

these results are outlined.

In Section 4 we compute numerically the model's

steady-state solutions of physical interest, i.e., those

yielding positive absolute temperatures. Three such

solutions, corresponding to three distinct climates of our

planet, are obtained: one corresponds to the current climate,

the second to an ice age, the third to a completely ice-

covered earth. In this section we also explore the effect

of certain modifications in the model on the number of

steady-state solutions.

In Section 5 the notion of stability for the solutions

obtained in Section 4 is defined precisely; it is investigated
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using a combination of analytical and numerical techniques.

The results are that the present climate and the ice-covered

earth are stable, whereas the ice age of the model is

unstable.

In Section 6 the effect of changes in the solar radia-

tion on the number and stabilityof steady-state solutions

is studied. The main result is that for a sufficient

decrease in the solar radiation (about 2%), the glacial and

the interglacial solutions disappear, leaving the ice-

covered earth as the only possible climate.
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2. The Model

The model chosen for study is a zonally-and-vertically

averaged energy-balance climate model. This means that

quantities in the model are averaged over longitude and

height, leaving colatitude as the only space variable.

The term energy balance means that the model is essentially

based on the energy equation of fluid dynamics and has sea-

level temperature u as the only dependent variable. The

equation governing the model is

(la) C(f)ut = Ri(,u) - R0 ( ,u) + D(o,u,u ,u) ;

C is the heat capacity of the atmosphere, land and water

masses; R. is the heat absorbed from incoming radiation,

(ib) R. = Q(0) [1 - a(0,u)]

where Q is high-frequency solar radiation and a is the

reflectivity (albedo) of the land and sea surface; R0 is

the heat lost in outgoing low-frequency planetary re-

radiation reaching outer space,

(lc) R0 = c(;,u)Gu4

and D describes the redistribution of heat on the surface

of the planet by conduction and convection,

1
(ld) D sin [ s i n  k(,u)]u .

The coefficients and forcing terms in this model
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represent yearly averages of the corresponding quantities and

therefore do not depend explicitly on the time t. Averaging

the daily and seasonal variations seems justified, since the

time scales in which we are interested in our investigation

are of the order of hundreds and thousands of years. The lack

of explicit dependence on time has the advantage that the

model admits, as we shall see, steady-state solutions, ut = 0,

which we define to be its climates. The purpose of this work

is to study analytically and numerically the number of these

climates and their stability under perturbations.

The first model of this type, in finite-difference form

and without time dependence, was developed by Sellers (1969).

The differential formulation is due to Faegre (1972); time

dependence was introduced by Dwyer and Petersen (1973) and,

independently, by Schneider and Gal-Chen (1973). Dwyer and

Petersen also gave the outline of a systematic derivation of

(1) from the energy equation of fluid dynamics, mentioning the

main assumptions involved. An even simpler model has been

proposed by Budyko (1969): in it the diffusion term D is

replaced by a nondifferentiated, linear term in u, and the

albedo is a simple step function of u only; this model was

also discussed very thoroughly by Leith (1974), and by Held

and Suarez (1974).

One of the main features of the model (la-d) is the form

of the albedo,

(2a) a = {b() - cl[Um + (u-c 2 z(p)-um)-]} c

where the meaning of the subscripts ( )_ and { } is
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given for a generic quantity h by

(2b) h = min {h,0}

and

0.25, h < 0.25,

(2c) h c = h , 0.25 < h < 0.85,

0.85, 0.85 < h

The subscript c stands for cutoff; the cutoff given by (2c)

embodies the observed minimum and maximum values of surface

albedo.

Snow and ice have higher reflectivity than bare ground

or water; since in regions of lower yearly average tempera-

ture the snow and ice cover persists for a longer fraction

of the year, at lower temperature the yearly average albedo

is higher; this is expressed in the monotonically decreasing

dependence of a on u. Further, the plausible assumption is

made that, above a certain yearly average temperature um ,

no snow or ice will be present at any time of the year;

therefore a is independent of u for u-c 2 z > um , as seen

from (2a) and (2b). The term c2 z() gives the difference

between sea-level temperature u and ground temperature, u-c 2 z.

A serious drawback of the model is that it does not

include the effect on the albedo of clouds, atmospheric

turbidity, relative humidity, and vegetation. The optical

properties of these factors and their relationship to surface

-7-



temperature are less well known and cannot be easily para-

meterized in a model as simple as the one at hand.

The factor c in the outgoing infrared radiation

term RO ,

(2d) c = 1 - m tanh (c3u6

expresses empirically the "greenhouse effect", i.e., the

screening by the atmosphere, in particular by the clouds

in it, of infrared radiation from the earth, thus preventing

part of it from reaching outer space. Notice that c decreases

as u increases; this indicates that cloud formation, and

hence the opacity of the atmosphere to low-frequency radiation,

increases with increasing temperature.

The function k(p,u) in (Id) has the form

c4 -c 5/u
(2e) k(4,u) = kl(e)+k2()g(u) g() e = f'(u);

u

kl(4)u is sensible heat flux in the atmosphere and in the

oceans, whereas k 2 (f)g(u)u is latent heat flux in the

atmosphere. Here k (p), k2 (4) are eddy diffusivities,

which parameterize convective transports; true conduction

is known to be negligible in the atmosphere-ocean system

on the planetary scale. In the original Sellers model,

k(4,u) had the form

k( ,u) = ks( ,u) - v(u )-(u+f(u))

where v is, for the purposes of modeling heat flux, mean

meridional velocity. The theoretical shortcomings of the
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additional term v-(u+f(u)) were pointed out by Robinson

(1971); the practical difficulties in giving a good para-

meterization are discussed by Sellers (1973).

Numerical studies of Schneider and Gal-Chen (1973)

indicate that results with the original Sellers model

(denoted by them as (S)) were very similar to those with

the model adopted here (denoted in their work as (SV)),

provided that the numerical values of k and k were

properly chosen (see the discussion on the determination

of coefficients further on). Furthermore, the recent

work of Gal-Chen and Schneider (1975) shows that there are

theoretical grounds on which the formulation (SV) with zero

meridional velocity is to be preferred. These considerations

will be touched upon later, in a different connection.

The constants cj , 1 < j < 5, u , a, m , as well as

the empirical functions C(4), Q(f), b(4), z(f), kl(f) and

k2(4) are made to fit currently measured values of temperature,

radiation, elevation, albedo and heat flux. The functions

C( ), Q(4) and z(q) are determined directly from measurements.

The function b(p) and the constant cl in (2a) were

computed by Sellers (1969) so as to fit existing albedo

measurements in the northern and southern hemisphere.

The constants m and c3 were also computed by Sellers, so

as to fit empirical data on R0 ; a is the Stefan-Boltzmann

constant. The form of the function g(u) and the constants

c 4 , c5  appearing in (2e) are derived from certain physical
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considerations having to do with the thermodynamics of wet

air and from corresponding empirical data (see Handbook of

Meteorology, 1945). The functions kl(f), k 2 (f) are computed

from measured data on sensible and latent heat flux, kl(f)u

and k 2 (f)g(u)u, , respectively. These computations are

based on the measured temperature distribution, denoted

hereafter by

u = u(,)

which will be called the data climate. Note that we use

here the term "climate" only for convenience, instead of the

lengthier "temperature distribution"; u(f) is not necessarily

a steady-state solution of the model; we return to this point

in Section 4.

The measured data are available at intervals of 100

latitude and are given in Table 1. Since the previously

quoted authors used finite-difference formulations with a

fixed 100 grid (except Faegre (1972), who used a 50 grid),

these data were sufficient for their numerical work. In our

numerical work, however, variable grid size was employed,

and the 100 data were accordingly fitted by smooth functions.

In fact, in order to have an additional check on the well

posedness of the model (i.e., the continuous dependence of

the solutions on the data, commonly referred to in the

meteorological literature as sensitivity), two forms of curve

fitting were used: (i) by Bernstein polynomials, and (ii) by

cubic splines. Results with the two forms of curve fitting
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were indeed very similar (see Table 2).

In this work we only consider symmetric solutions of (1);

all data are symmetrized with respect to the equator,

O = /2. For such data the appropriate boundary conditions

are

(3a) u (0) = 0 , (3b) u (7/2) = 0 ;

in the symmetric case these are equivalent to u (0)= u (T)= 0.

We feel that the slight asymmetry between the northern

and southern hemispheres could hardly have had a major

influence on climatic change. Indeed, the circulations

of the two hemispheres are practically separated from each

other by the intertropical convergence zone, which acts with

respect to our model as an insulating wall. The approximation

involved in placing this wall at the equator is no worse

than other approximations in the model (see also Held and

Suarez, 1974). A further reason for symmetrization will

become apparent in the next section.
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3. Previous Results

Budyko (1969) and Sellers (1969) used iterative numeri-

cal techniques for constructing solutions of their time-

independent models. They explored a range of values of the

parameters appearing in the model, especially of the solar

radiati-on Q,- and- obtained one-solution for each -set -of

values. These solutions did not depend smoothly on the

parameter values; in several instances, small changes in the

parameters led to large changes in the solution. For

instance, an increase or decrease of a few percent in Q

resulted in temperature changes leading to extensive melting,

or significant expansion of the polar cap, respectively.

Faegre (1972) obtained for a certain given set of values

of the parameters five distinct solutions of his variant of the

Sellers time-independent model. Two of these were highly

asymmetric, and disappeared when c(p,u) in (1) was taken

as constant; hence Faegre considered these solutions to be

spurious and unphysical. It was the desire to eliminate a

priori such solutions that suggested the choice of symmetric

coefficients. Faegre's formulation of the albedo is slightly

different from that of Sellers, mainly in that the minus

subscript in (2a) (i.e., the cutoff of ca(,u) at um) was

missing.

The three symmetric solutions of Faegre could be

described as corresponding to the present climate, an
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ice-age climate (about 150 C colder on the average than the

previous one), and a completely ice-covered earth (at an

average temperature of about 175 K). This last climate

was also the one obtained -by Sellers when decreasing the

solar radiation by more than 4%.

These results raised the question of the transitivity

of the earth's climate, as formulated by Lorenz (1968, 1970).

In Lorenz's terminology, a time-dependent system of equations

is transitive if its solutions have a unique equilibrium

statistic, that is, if all solutions, independently of

initial conditions, have the same infinite time average;

otherwise the system is intransitive. Lorenz pointed to the

existence of certain transitive systems which possess a

property called by him almost intransitivity, i.e., that

of having at least some solutions whose averages over long,

but finite, time intervals are different -- these solutions

then would alternate in time between the different averages.

He raised the possibility that the atmospheric system is

almost intransitive; in other words, that the known climate

changes in the past were not necessarily caused by changes

in external conditions (like solar radiation), but rather

were an effect of the normal evolution of the system.

Schneider and Gal-Chen (1973) investigated the question

of transitivity for energy-balance climate models by

formulating time-dependent versions of the Budyko (B),

Sellers (S and SV) and Faegre (F) models. They solved
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numerically the initial-value problem governing these time

dependent models for a large range of initial conditions.

The models were found to be intransitive, rather than almost

intransitive: every solution tended as t + - to one of

two (or more, in the case of the (F) model) equilibrium

solutions; viz., the equilibrium statistic of the system

governing each model was not unique, and no spontaneous

transition from one equilibrium to another was possible.

The two equilibrium solutions obtained for all models

corresponded to the present climate and to the previously

mentioned completely ice-covered earth.

The equilibrium solutions, at least for the (S) and

(SV) models, proved stable under rather large perturbations

in both initial conditions and parameters. That is, solu-

tions which differed in their initial conditions from one

of the limiting "equilibria" by as much as + 18 K tended

as t - c to the "equilibrium" near which they started.

Also changes of + 1.5% in the solar radiation led to limit-

ing equilibria which differed by only a few degrees from

the unperturbed ones. However, changes of more than - 18 K

in initial conditions or - 1.5% in solar radiation led from

the. "present climate" to the "ice-covered earth". The latter

seemed to be the most stable climate in all investigations

mentioned above.

Schneider and Gal-Chen did not obtain a limiting steady-

state solution which would correspond to a true ice age as
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recorded in the planet's history. Their results with the

time-dependent version of the Faegre model (F) were rather

different from those with the two versions of the Sellers

model (S and SV), especially with regard to the stability

of steady states under perturbations.

Contrary to the results of Schneider and Gal-Chen,

Dwyer and Petersen (1973), with a time-dependent model

essentially identical to Schneider and Gal-Chen's (S),

obtained solely one type of limiting steady state, that

corresponding to the "present climate". They used only the

data climate u = u(0) as initial conditions, but varied

the solar radiation Q. The actual values of the limiting

equilibrium depended of course on the values of Q used,

but slight changes in Q yielded only a difference of a few

degrees between the average temperature of the equilibrium

and that of the data climate; no "deep freeze" equilibrium

was obtained.

These results seemed to be interesting enough in order

to warrant further study of energy-balance climate models.

As indicated in the previous section we chose to investigate

symmetric solutions of the (SV) model of Schneider and

Gal-Chen, and of some variations thereof, including the (F)

model. We hope that this study will add as much light and

as little heat as possible to the climate question (Jackson,

1962).
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4. Steady-State Solutions

We turn now to the mathematical theory of equation (1).

Introducing the new space variable x = 2/r, we obtain the

initial-and-boundary value problem (IBVP)

Su = -2 .1 - - -- rx-C(x)u sin x/2) x sin -- kl(x)+k (x)g(u)]u
t 2 _sin_(_sx/2) in

- cu 4 [1 - m tanh (c3u
6

(4)

+ Q(x)l 1-b(x)+cl[u +(u-c z(x)-u m)] ,

0 < x < 1, 0 < t

(5a) u x(0,t) = ux(1,t) = 0 , (5b) u(x,O) = u(x) ,

where (4) is a nonlinear parabolic partial differential

equation (PDE). Here g(u) is given by (2e), p = 1

(its significance will appear later, in Section 6) and

- -15 -6

S = 0.009, c 2 = 0.0065 deg m, c3= 1.9 x 10 deg ,

(6) c 4 = 6.105x0.75xexp(19.6)x103 dyn deg cm - 2 , c5= 5350 deg,

-12 -2 -1 -4
* = 1.356x10 cal cm sec deg , m = 0.5, u = 283.16 deg.

Mesh data at 100 latitude for C(x), kl(x), k2 (x), Q(x), b(x),

z(x) are given in Table 1. The units of the constants and
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mesh data are chosen such that the common units of all terms

-2 -1
in (4) are cal cm sec .

The first step of the investigation is to find steady-

state solutions of (4, 5a) in the range of physical interest,

and to study their dependence on changes in the model. We

consider therefore the steady-state equation obtained from (4)

by setting ut  0. After some rearrangement we get the

following two-point boundary-value problem (BVP) for the

system of ordinary differential equations (ODE):

(7a) u = v
x

(7b) vx = - (2 F ( u (cot ---)v - v(x) (x)g(u)(7b) Vx-( k(x,u) 2 k(x,u)

k2 (x)g' (u) 2
vk(xu) , 0 < x < 1 ,

k(xu)

(8) v(0) = v(1) = 0

where

(7c) k(x,u) = kl(x) + k 2 (x)g(u)

(7d) F(x,u) = PQ(x) l - b(x)+ c l [um+ (u-c 2 z(x)-u m) -}c

- ou 4[1-m tanh (c 3 u6)]

We use shooting (Isaacson and Keller, 1966, Keller, 1968)

as the numerical procedure to solve (7, 8): equations (7a,b)
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are solved with initial conditions

(9a) v(0) = 0 , (9b) u(0) = u 0

for different values of u0 ; denote by u(x;u 0 ), v(x;u 0)

the solution of the initial-value problem (IVP) (7,9) in

-order to-emphasize its dependence on the parameter u 0 .

An iterative scheme is then used to obtain those values

of u0 which satisfy

(10) v(l;u 0) = 0

For these values of u0 the solution u(x;u 0 ), v(x;u 0)

of the IVP (7,9) is also a solution of the BVP (7,8).

To obtain numerical solutions of prescribed accuracy to

the BVP (7,8) one has therefore (Keller, 1968) to achieve

the desired accuracy both in

(i) solving the IVP (7,9), and in

(ii) solving iteratively the nonlinear (finite) equation (10).

In solving numerically the IVP (7,9), we encounter the

difficulty that (7b) is singular at the origin, since

cot(fx/2) -~ as x + 0. This singularity arises from the

mathematical form of the diffusion term D of (1) in spherical

coordinates. It is easily shown, though, that (analytical)

solutions of the IVP exist and are unique at least "in the

small", i.e., for u0o-Uo0  < E , 0 < x < 6, arbitrary U0

and some 6, E > 0. The numerical difficulty of the initial

point being singular can be circumvented by using a variable-

step method.
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It also turns out that in order to achieve prescribed

over-all accuracy of the numerical solution of (7,9) with

a minimum of computational effort it is convenient to use a

variable-step variable-order multistep scheme. The ODE

solver we computed with was developed at the Lawrence Liver-

more Laboratory and is documented by Hindmarsh (1972,1974).

Both the Gear and Adams methods included in the package were

used and gave results identical to within the prescribed

-7relative accuracy, which was 10 ; however, the Adams method

was faster and was therefore used in most integrations.

The number of steps needed per solution (per value of u0 )

for this accuracy was of the order of 100. It is of interest

to point out that near the singularity at x = 0, and near

the point where the jump discontinuity in the derivative of

F(x,u(x;u 0 )) occurred, the order of accuracy chosen by the

scheme was one and the step size was very small, so that a

proportionately larger amount of computation was done in the

neighborhood of these two points.

Thus every solution of (7,9) for given u 0 puts at

our disposal a value of the function v(l;u 0), accurate to

-4 *
10 . To find the zeros of v(l;u 0), we used the method of

false position (Isaacson and Keller, 1966). The criterion

for u 0 to be a root of (10) was Jv(l;u 0) < 1 0
- 3

* 3
In the units chosen, typical values of u are 0(10 ) and

of v are O(102)

-19-



The range of physical interest in which we searched for

solutions of (10) was 100K < u0 < 300K (see also Faegre,

1972). Within this range, three solutions of the BVP (7,8)

were found which are denoted by ul(x), u 2 (x), u 3 (x).

They correspond to

u 1 (0) 247.74 K , u(0) = 223.97 K , u 3 (O)- 168.94 K.

The curve ux(1) vs. u(0), the zeros of which correspond

to the solutions u3,u2,ul , is given in Figure 2. The

individual solutions ul(x), u2 (x), u 3 (x) are plotted in

Figure 3.

It is customary and useful to characterize a climate

of the model, i.e., one of the solutions above, by its

average temperature, rather than by the temperature at the

pole. Therefore we introduce for functions 4 the

averaging operator & by

2 2

& = f(x) sin (R ) dx sin (R ) dx.

0 0

In ipartic a r it is known (Isaacson and Keller, 1966) that

for functions symmetric about the equator, f(2-x) = f(x),

which also satisfy x(0) = 0, and hence can be extended so

as to have period 2, the trapezoidal-quadrature approximation

of & is very accurate. Denote this approximation by A ,

where A = 1/9 (corresponding to a 100 mesh); then we have

&aul = 287.76 K, A u2 = 267.44 K, AAu 3 = 175.43 K
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Clearly ul corresponds to an interglacial, u2 to a glacial,

and u 3 to the ice-covered earth.

Note that for the data climate u = u(x)

u(0) = 247.36 K, AU = 287.20 K ,

which is indeed very close to the interglacial solution of

the model, ul (see also Figure 3). Though present observa-

tions were used to obtain constants and empirical functions

in (4), no explicit term was added to ensure that (4) hold

with u - 0; also the diffusion term, D, is of the same

order of magnitude as the radiation terms, Ri and RO , so

that this is not the result of a simple radiation balance.

The same is true of the work of all the previous authors

discussed in Section 3 ; these authors, however, assumed

at least implicitly that the data climate should be a

steady-state solution of the model, or approximately so.

Since this result is not actually built into the model, as

far as we can see, we think it is rather remarkable that

this class of models yields a steady-state solution, ul(x),

very close to the data climate, i(x). Henceforth we shall

refer to ul also as the "present climate" of the model.

In fact, Schneider and Gal-Chen (1973) did use an extra

"fudge coefficient", 0.97 < c 0 (x) < 1.03, in R0 in order

to achieve better agreement between the interglacial, or

"present" climate of their models and the data climate;

they obtained &ul 287.06 K vs. &a 287.30 K for the

(S) model.
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The mesh data, from which constants and empirical

functions for the model were computed, are known to be in

error by possibly as much as 100% (Schneider and Gal-Chen,

1973); also some of the parameterizations used in formulating

the model are questionable. Therefore we made a number of

computations in order to obtain information on the dependence

of the physically significant solutions, Ul'u2,u 3, on varia-

tions in the model. The salient features of these computa-

tions, summarized in Table 2, are:

(1) The dependence of all these solutions on the

coefficients seems to be very smooth.

(2) The bounds on the albedo, 0.25 < a(x,u) < 0.85, are

essential for the existence of three steady-state solutions

in the physical range, 100 K < u(0) < 300 K: u3 disappears

when the bound a < 0.85 is not enforced, and ul disappears

when the bound 0.25 < a is not enforced.

(3) The terrestrial radiation term RO, given by (ic),

and its nonlinearity are essential for the existence of

physically significant solutions: if the term is set equal

to zero all solutions, ul,u 2 ,u 3 , disappear; when it is

replaced by its average,

R0 - &Ac(x,(x))ou (x) = const.

u2 only obtains; when R0 is replaced by a linear approximation,

R0 = au 3 {u+4(u-u)} Ac(x,I(x)) , u = &aA(x)

then ul only obtains.
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(4) Our results with the model using the Faegre formula-

tion of the albedo are very similar to those using the Sellers

formulation; it is hard to explain the disagreement in this

respect between our results and those of Schneider and

Gal-Chen (1973), who, as mentioned in Section 3, obtained very

different results when using the two albedo formulations.

(5) The values of the empirical functions in the model

when fitting mesh data by (i) Bernstein polynomial approxima-

tion and (ii) cubic spline interpolation are pointwise rather

different for some of the functions (see Figure 1). The

solutions of (7,8) when using these different fits are, however,

very close. This also supports the assertion in paragraph (1)

above, and shows that the uncertainty in the mesh data does

not affect in an important way the conclusions of the investi-

gation.

We explored another variant of the model, in which the

eddy diffusivity k(x,u) given in (7c), corresponding to the

(SV) model of Schneider and Gal-Chen, was replaced by k(x,u),

where u is the data climate; hence also g'(u)v in (7b) is

replaced by g' (iu) ' (x). This variant, in accordance with the

terminology of Gal-Chen and Schneider (1975), would correspond

to an (SVC) model. We denote this modification of (7) by (7');

the solutions of (7',8) are

ul(0) = 247.55 K, u 2 (0) = 227.76 K, u 3 (0) = 169.44 K,

& u1 = 287.70 K, AA u2 = 268.60 K, A u3 = 175.44 K.
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These are indeed very close to the solutions of (7,8),

especially for u 1 and u3 (see also Figure 3).

Gal-Chen and Schneider (1975) investigated the effect of

variations in the solar radiation pQ on the equator-to-pole

temperature gradient; they argue that this dependence should be

monotone, in fact monotone increasing. In the light of this

argument and of their results, model (SV) is superior to (S),

as already mentioned in Section 2; moreover, model (SVC) is

superior to (SV). Since (SVC) is also more convenient to use

when investigating the stability of the steady-state solutions,

we shall work with it in the sequel; the corresponding form

of (4) we denote by (4'), the corresponding form of (1) by (1'),

and the corresponding form of (7) by (7').

For this model, additional computations were made outside

the range of physical interest. One more steady-state solution

was found; we denote it by u 4 (x), and it satisfies

u 4 (0) = - 185.99 K, a u4 = - 175.40 K .

Most probably there are no other solutions of the BVP (7',8)

at all. Indeed, the solutions of the IVP (7',9) become

unbounded as u 0 moves towards the ends of the range explored,

viz., -1330 K < u 0 < 300 K; i.e., u(x;u 0 ) + +C as u 0 approaches

the ends of the interval above (see Figure 2).

We would like also to point to the fact that some of

the modifications of the model which have three physical

steady states yielded numerical values of the latter consider-
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ably higher than ulu 2 'u 3 (see Table 2); however, it was the

qualitative feature of the number of solutions and their

approximate position with respect to each other that was of

interest in our investigation: the average temperature of

a given solution of any fixed model could be changed to

practically coincide with that of the solution u. of (4) to

which it corresponds by adjusting the values of the coeffi-

cients.
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5. Stability of the Steady-State Solutions

In the previous section we have shown that equation (4')

with the boundary conditions (5a) has three steady-state

solutions of physical interest, u = u.(x), 1 < j < 3. In

this section we shall study the stability of these steady

states.

Let us concentrate on any one of the steady states above,

u = u.(x), where j is fixed. Stability of u. means that small

perturbations of u. die out with time. More precisely, u.
0

is stable if, when taking any nearby state U, i.e., one

which differs little from u. ,

o o

(11) U = u.(x) + Ev(x) ,

0

say, where v is arbitrary and c > 0 is not too large, then

the solution U(x,t;E) of (4'-5) with initial condition

U(x,O;E) = U(x;E) tends to u. itself as t - .

Let (4') be written symbolically as

(12) ut = N(u) ,

where we divided through equation (4') by C(x), 0 < Cm < C(x)m -

< CM < m, and N(u) is the corresponding right-hand side. Take a

perturbed u, u = U(x,t,c), which is assumed to satisfy

the boundary conditions (5a) and the initial condition (11).

If such a solution of (12) exists for all e sufficiently small,

0 < E < EO then the equations
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Ut(x,t;E)-Ut(x,t;0) N(U(x,t;E))-N(U(x,t;0))
(12') E

- 0

also hold, with U(x,t;O) = u. (x). Letting e - 0 we

obtain the linearized equation

(13a) v t = - L.v ,

where we define v(x,t) E 2  (x,t;E)

(13b) L. = N(U(x,t;)) - N(u) , l<j<3.

At this point, for the sake of simplicity, we shall

drop the subscript j, and u will thus stand for some u. ,

L for the corresponding L..

Equation (13a) is linear in v and it has a unique solu-

tion v satisfying the boundary conditions

(13c) vx (0,t) = v x(,t) = 0

and arbitrary initial conditions

(13d) v(x,0) = v(x)

The solution may be found by the usual method of separation

of variables, or expansion in elgenfunctions (normal modes).

Consider

v(x,t) = e w(x)
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this v will be a solution of (13) with v(x,0) = w(x) iff

(if and only if) A is an eigenvalue and w is an eigenfunction

of L, i.e., iff the pair (X,w) satisfies the homogeneous

problem

(14a) Lw = Aw

(14b) w (0) = wx (1) = 0

We shall show that the operator L has sufficiently many

eigenfunctions, and that therefore any solution v of (13)

can be written as a series

- (k)t (k)
(15) v(x,t) = C a e w (x)

k=0

where (Ak) w (k) are all the solutions of (14). It is

clear from the derivation (12') of (13) and from (15) that

for the steady state u to be stable it is necessary that

every eigenvalue A(k) of L have positive real part:

(16) Re X(k ) > 0.

This condition defines the so-called linear stability of u.

It has been shown rigorously in a few cases and it is believed

in many others that (16) is also sufficient for the stability

of u as we defined it at the beginning of this section, i.e.,

that linear stability implies nonlinear stability. In the

next section we shall give an argument which will make it at

least plausible that this is the case also for the problem

at hand.
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We turn now to the analysis of the eigenvalues of the

linear second-order ordinary differential operator L, which

we can write as

(17a) Lw = r (p(x)w x + q(x)w

Here p,q,r are determined by (13b) and by (4'):

(17b) r(x) = C(x) sin (-7 ),

(17c) p(x) = ()2s ( )k(x,)

(17d) q(x) = {Q(x)(cl)c' - d(x,u)}/C(x)

with

c I if 0.25 < a(x,u) < 0.85

(17e) (cl )c = and u(x)-c 2 z(x)-u m < 0

0 otherwise,

and

S4
(17f) d(x,u) = c(x,u)au

= ou3 4[1-m tanh(c 3 u 6 ) ]- 6mc3u6 [1-tanh2 (c 3u6)].

Clearly L thus defined is formally self-adjoint (Courant

and Hilbert, 1953, Birkhoff and Rota, 1969) under the

prescribed boundary conditions with respect to the inner

product
1

(18) (wlw 2 ) = f r(x)wl(x)w2 (x) dx
0

Moreover, r,p are nonnegative and twice continuously differ-
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entiable on the interval I = [0,1], and q is piecewise contin-

uous on I. However,because of the singularity at x = 0 due to

the fact that r(0) = p(O) = 0,the usual Sturm-Liouville theory

of self-adjoint operators (Courant and Hilbert, 1953, Birkhoff

and Rota, 1969) does not apply to L; this difficulty though

can be overcomeandthe. theory can be extended. The crucial

element in this extension is the observation that, because

of the boundedness of q, L is bounded from below in the sense

that, for any w satisfying (14b) for which (w,w) < -, the

inequality

(19a) <w,w> > K(w,w)

holds with some fixed constant K, K > min q(x) >--,independent
0<x<l

of w; here <Tw,w> is the Dirichlet integral corresponding to L,

1

(19b) <w,w> - (Lw,w) = (pw2 + rqw2 ) dx

0

This result, together with an analysis of the nature of

the singularity at x = 0, are sufficient to show that indeed

L has a complete system of eigenfunctions, orthonormal with

respect to the inner product (18) (Birkhoff and Rota, 1969),

and that the eigenvalues of L are real and can be arranged

in an ascending sequence

-0 < (1) < (2) < (3) < ...

with X(k) + 0 as k - -, and K = X(1) in (19). Hence

any solution v of (13) can be written as a series (15).
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Therefore the stability question for the steady state u

reduces to determining whether

(16') (1) > 0 ,

in which case u is stable, or whether the opposite holds,

in which case u is unstable.
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5a. Stability Criterion

In this subsection we shall show that it is possible to

determine the sign of 1 ( ) without actually computing X( 1 )

We start with the variational characterization of the

lowest eigenvalue (Courant and Hilbert, 1953), X(1)

(1) <v,v>(20) ( = min mn <v,v>
<v,v>< (vv) (v,v)=l
(v,v) 0

i.e., X( 1 ) is the minimum of the Rayleigh quotient R(v)

corresponding to L,

(21) R(v) E <v,v>/(v,v)

and the minimum is assumed for v = w ( 1) . Indeed, (14a) is

the Euler equation for (20), and vx(1) = 0 is the "natural"

boundary condition for (20) in the sense of the calculus of

variations (Courant and Hilbert, 1953); also v x(0) = 0 is,

according to the theory of singular operators with the

properties of L, the only boundary condition at x = 0 which

ensures that, for solutions v of (14), <v,v> as well as (v,v)

is finite. In particular, we conclude that the minimizing

function, v = w(1), is at least as smooth as the coefficients

of L, viz., it must have a piecewise continuous second

derivative.

With these preliminaries we are able to prove the

following known
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Lemma. The first eigenfunction of L, w ( ) , is strictly

positive,

w (1)(x) > 0 , 0 < x < 1 .

Proof: From the definition (21) of R(v) it is clear that

R(w ( I ) 1) =  R(w ) ,

where Iyl denotes the absolute value of y. If w ( 1 ) had a

zero at some interior point x 0 , 0 < x 0 < i1, and w(1)(x 0 )0,

then the first derivative of Jw(1)J would have a jump at

x = x 0 , which contradicts the smoothness of Jw(1) as a

solution of the variational problem. If, on the other hand,

w (x 0) = 0, 0 < x 0 < 1, or w (1)(0) = 0, or w(  (1) = 0,

then, by the uniqueness theory of linear ODE (Birkhoff and

Rota, 1969), it would follow that w(1 ) - 0; this contradicts

the fact that w ( 1 ) is a nontrivial solution of (14),

completing our proof.

Now we are ready to state our stability criterion, which

is part of the conclusion of the

Theorem. Let L, A w be as above. Suppose

also that there exists a function v, as smooth as w,

nonnegative, v > 0 on I, and satisfying

(22) Lv > 0 , v x(0) = 0 , v(0) = 1

Then vx(1) > 0 implies A > 0. Moreover,

(i) A > 0 if either Lv 1 0 or v (1) > 0, and

(ii) if Lv E 0 holds, then X>0, A=0, or A<0, according to

whether v (1) > 0, v (1) = 0, or v (1) < 0.
x x x
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Proof: The required results are easily read off from the

following sequence of eq _ities obtained from the definitions

and by integration by parts:

1 1

Sf rvw = A(w,v) = (Lw,v) = -(pwx)x v + rqwv
0 0

1 1
= -pw v + pwv + rqwv

0 0
1 1

= pwv x + f -(p)x w + rqvw

0 0

= (pwvx ) (1) + (Lv,w)

where we used w (0) = w (1) = 0 and v (0) = 0

Note. This is essentially a comparison theorem, of the

type familiar from Sturm-Liouville theory (Birkhoff and Rota,

1969).

The result under (ii) above is the stability criterion

which we shall use. For completeness we give here also the

following slight generalization as a

Corollary. Let L, X, w be as in the Theorem. Suppose v

satisfies the hypotheses of the theorem, except for that of

being nonnegative on I. Instead, let x0 , 0 < x0 < 1, be

the first zero of v,

v(x) > 0 on 0 < x < x0.
Then X < 0.
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Proof: The result follows from the same integration by

parts carried out in the proof of the theorem, except that

now the upper limit of integration has to be x0 rather than

1, and we use v(x 0 ) = 0 rather than wx(1) = 0 in passing

from the second to the third line. Moreover, since v(x) > 0

for x < x 0 , and v is continuously differentiable, vx(x0)< 0.

Furthermore, it cannot be that both Lv E 0 and v x(x 0 ) = 0,

since then we would have, by uniqueness, v E 0, which

contradicts v(0) = 1. This completes the proof.
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5b. Stability Results

In this subsection we shall apply the stability criterion

obtained in Subsection 5a to the steady-state solutions u. ,

1 < j < 3.

For this purpose we construct functions v. by solving

(22) with the equality sign, and with L = L. given by (13b)

and (17). The results, obtained with a relative numerical

-7
accuracy of 10 , are that

(a) v. , j = 1,2,3, is positive, v. > V. > 0, V. > 0.5 ;

d d

(b) d vj.() > 0 for j 1,3, whereas d v.() < 0 for j=2.
(b) x dx

The actual computed values are

d v(1) = 2.39970, d v2 (1) = -3.24312 d (1)=4.31025.

These values of the derivatives at x = 1, together with the

values of V., are sufficiently bounded away from zero in order

to conclude that the conditions of the theorem are satisfied

beyond the doubt of numerical uncertainty.

Hence the solutions representing the present climate and

the ice-covered earth are stable, whereas the so-called ice

age of the model is unstable. This result agrees with and

throws additional light on the results of previous authors, in

particular the time-dependent integrations of Schneider and

Gal-Chen (1973).
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Actually the stability computations were carried out

also for the solutions of

(4") N'(u) = 0 , 1 < j < 3,

with

22 0 a Tx
(23) N'(u) = sin(x/2) D sin ( )xusin(wx/2) -x 2 x

+ Q(x) 1 - B+ clu}c - c6au4

where the subscript {c  is defined in (2c) and

-5
K0 = k(x,i(x)) = 2.2x10 , B = A b(x) = 2.85881,

c 6 = c(x,I(x)) = 0.61 ;

the corresponding linearization of N' is

(13') L. - N (uj) = ( ) K 0 sin(~ ( xS u T sin(rx/2) ax 2 x

+ Q(x)(cl)c - 4c6u ,

where

(C 1) c { c1  if 0.25 < 1-B +C u < 0.85,

c0 otherwise

This is, according to the experiments carried out in Section 4

(see Table 2), the simplest form of (4) which still yields

approximately the same steady-state solutions in the physical

range of interest. The results are the same, i.e., ul and u 3
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are stable, and u2 is unstable. It seems therefore quite

plausible to conclude also that for all models, lying in some

sense between (4) and (4"), the steady states corresponding

roughly to ulu2,u3 have the same stability properties as the

latter. Combining this remark with the one made at the end of

Section A 4, it seems that we_ have a result about the stability__

of the steady states for a certain type of energy-balance model,

rather than just for one specific model of this type. It seems

desirable to define precisely the type of model having these

properties, and we intend to try to do so in further work.

Having thus determined the stability properties of the

steady states of (4'),we want to obtain some additional infor-

mation by actually computing the lowest eigenvalues 1 , and

corresponding eigenfunctions w(1) of , 1 < j < 3. The eigen-

values are

1(1)= 3.95390x0 
9 , 1)= -5.87662xl0 (1)= 5.13587x10-9

1 2 3

and the eigenfunctions w ( ) 1 < j < 3 are plotted in Figure 4.

(1) (1)
The method for computing (X ,w ) was again shooting,

this time with respect to the parameter A. That is,equation (14a)

with L = L. , was solved for w(x;X) with initial conditions

w(O;X) = 1 , wx (0;) = 0 ,

and with different values of the "shooting parameter" X. The zeros

of the function v x(l;A) were then computed by regula falsi to

within an accuracy of 10- 4 . The over-all relative error in
-7

computing solutions of the initial-value problem was 10 7

as before.
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Notice from (15) that

(1)

is a characteristic decay or relaxation time for the solution

U(x,t;c) of (12) to u = u.(x). This time is of the order

of 10 years for all j,

T1 8.0 years , 2  5.4 years,, T 3 = 6.2 years.

In this context it is remarkable that Schneider and Gal-Chen

(1973) state that, in one of their integrations, the solution
0

of (4) with initial data u(x) = u(x) and p = 0.984, after

dropping rapidly by about 12 K in average temperature, was

nearly constant for.about 50 years of simulated time, and

then finally dropped to a steady state close to our u3 (x).

From our results it becomes clear that the solution mentioned

above hovered for a time of the order of T2 around u2 , but

could not persist there indefinitely because of the instability

of u 2 , and finally attained u3 , which was stable.

It also follows from (13) and (14) that multiplying C(x)

by a constant K > 0 will result in T., 1 < j < 3, being

multiplied by K. A similar statement holds also for the

nonlinear equation (4), since such a constant K just

corresponds to a different scaling of the time t (see also

Schneider and Gal-Chen, 1973). Experiments in determining

We shall see in the next section that T2 increases with

decreasing }.
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characteristic response times for solutions of (4') were

done by Dwyer and Petersen (1973), who used two heat capaci-

ties C(x), both larger than that used by Schneider and

Gal-Chen (1973) and by us. It seems, however, that upon

decreasing p in (4) to a = 0.98, as they always took
0

u(x) = u(x) in (5b), the average temperature of the solution

u(x,t) dropped rapidly at first, and only slowly thereafter,

as indicated by Figure 2 in their article. Apparently this

slow decrease, which shows that their solution u(x,t) of (4')

was approaching a steady state close to our u2 (x), was

interpreted by them as proving the nonexistence of a steady

state u 3 (x), which had been obtained in the work of Budyko,

Sellers and Faegre when decreasing 4 by a similar amount.

The influence of changes in P on the steady-state

solutions u. , 1 < j < 3, of (4') will be investigated in

the following section. At this point we only want to mention

that, whereas a multiplicative factor K in C(x) affects

the magnitude of ( ) and hence of ., our theorem shows

that it does not affect the actual stability of uj , i.e.,

(1)the sign of .
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6. Perturbed Steady-State Solutions and Bifurcation

It is clear that steady-state solutions of (4') could

not spontaneously evolve into each other. More precisely,

the solution of (4'-5a) with initial condition u(x,0O) = u.(x),

j = 1,2,3, is u(x,t) E u.(x). Moreover, it stands to
0

reason that, for any physical initial condition, u(x) > 100 K,

we would have

lim u(x,t) = u.(x) ,

with j = 1 or j = 3, since u2(x) is (linearly) unstable,

whereas u (x), u3 (x) are (linearly) stable (and u4 (x) <-170K

< 0).

Thus, to explain physical ice ages, one has to consider

perturbations in the parameters appearing in equation (4').

Such perturbations would presumably be caused by physical

mechanisms not included in the model. The most likely

candidate for such a role is p, which up to now was taken

to be unity. Indeed, many ice-age.theories rely heavily on

a change, however small, in the amount of solar radiation

reaching the lower layers of the atmosphere (SMIC, 1971,

Beckinsale, 1965).

Some attribute the assumed decreases in solar radiation

to changes in the parameters of the motions of our planet

(Milankovitch, 1930), others to airborne volcanic dust

due to an increase in volcanic activity (Fuchs & Patterson,

1947), and so on. There has also been concern about a
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possible climatic catastrophe being imminent because of the

increase in the quantity of industrial pollutants in the

atmosphere (Rasool and Schneider, 1971).

To investigate the effect of such changes in the model

at hand, the curve ux(1) vs. u(O) was recomputed for

_different values _of xj, in particular with a view to obtain-

ing u l (x;p), u 2 (x;p). One important result is that these

two solutions coallesce for

PC = 0.98152

and disappear entirely for p < Pc. The bifurcating solution

u = uc (x) = u l ( x ; p c ) = u2(x;Pc) was computed with over-all
- 9  - 7

relative accuracy 10 and lu (1)I < 5x10 . The

(u(0),ux(1))-curve corresponding to p = pe is given in Figure 5;

notice that it is very flat near u(O) = u (0), which makes

it difficult to compute uc(x) accurately.

Further computations were carried out for p = 0.982,

0.985, 1.01, 1.02, 1.03, 1.04 and 1.05. The results of these

computations are summarized in Table 3 and plotted in Figure 6.

It is quite interesting that, whereas for y > 1.0 the

dependence of u.(0), &au.(x), j = 1,2, on P is almost linear,

this dependence is definitely quadratic near p = pc ; the

latter is in good agreement with the general theory of

bifurcation for nonlinear parabolic problems (Hoppensteadt

and Gordon, 1975). According to the theory, there exists

in principle the possibility that, instead of disappearing

at = ,e , the two solution branches u (x;P), u2 (x;p) could
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merge into one periodic solution ul2(x,t;p) for p < pc

This possibility was not borne out, however, by the time-

dependent computations of Dwyer and Petersen (1973), and of

Gal-Chen and of Schneider (1973, 1975); we did not investi-

gate it further.

Concerning the problem of the pole-to-equator tempera-

ture gradient,

Au. = u.(l) - u.(0) , 1 < j < 3,

as discussed by Stone (1973) and Gal-Chen and Schneider (1975),

the curve Au. = Au.(p), j = 1,2, is particularly interesting.

We notice that

(a) the values of Aul lie below those for Au2 ;

(b) the values of Aul are monotonically decreasing with p;

(c) the values of Au2 have a maximum for p somewhere between

p = 0.985 and p = 0.99;

(d) the dependence of both Aul and Au2 on p, but especially that

of Aul , is very steep near p = pc"

Being aware of the limitations of the model, as pointed out

in Section 2,,we do not want to make extensive comments

concerning these results, but only note them for comparison

with the results of other models and for further study.

We also studied the stability of the solutions u = uc(x)

and u = u 3 (x;Pc). Repeating the construction indicated at

the beginning of Subsection 5b for v = v and v = v 3 , where
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Lj = - N(U;cc ) u j = c,3,

we obtained the following results:

(a) v. , j = c,3, is positive, v. > V. > 0, V. > 0.75 ;

d -3 d
(b) dx (1) = - 7.56xl0 , v3(1) = 4.23362.

Clearly u 3 (x;p c) is still stable, in fact (d/dx)v3 (l;p c)

= 4.23 is very close to (d/dx)v3 (l;1.0) = 4.31, showing

the extremely smooth dependence of u3 (x;) on p.

The negativity of (d/dx)v c(1) would seem to point to

outright instability of u c(x), but in fact its small

numerical value indicates that, within the accuracy of the

computations, it is actually zero, i.e., uc(x) is neutrally

stable. Indeed, the mathematical theory of nonlinear

problems (Nirenberg, 1974) shows that for a bifurcation to

exist, as in the case at hand, the linearization

L N(u;p )Ic Du c u=u c

of the spatial, time-independent, operator N at the bifurca-

tion point (u c c ) has to have a zero eigenvalue. This

follows from the infinite-dimensional generalization of the

one-dimensional fact that a function can be inverted in a

neighborhood of a point at which it has a nonzero derivative,i.e.,

that it has a unique branch near such a point.

We also computed the lowest eigenvalues 1) and
J

(1)corresponding eigenfunction w of L (c ) for j = c,3,
j -44-
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by the shooting method described in Subsection 5b. In this

computation, the results on v. mentioned before were valuable

in making a first guess for the shooting parameter A. The

computations yielded

(1) -11 (1) 5.07265x10-9
S1.287x0 , = 5.07265x10 .

c 3

Again we notice that l) (c)= 5.07xl0 is very close to

3(1) (1.0) = 5.13xl0 , whereas (1c = 0.4x10- 2  (1.0)
c 1

- 2  (1)0.2x10 X 2 (1.0) is practically zero, as it has to be

analytically.

It is clear by the continuity of X1) (p) in the parameter

1 that for p < p < 1.05 we have A(1) > 0, (l) > 0, andc 1 3

12 < 0, so that the interglacial and the ice-covered earth

are stable for the entire range of p explored, whereas the

glacial is unstable for the same range of p. Furthermore the

ice-covered earth is stable also for smaller p.

There is one further point of view, which, while illumi-

nating the significance of the neutral stability of u (x),

also argues for our linear stability analysis being sufficient

for concluding on nonlinear stability or instability of the

steady-state solutions of (4') corresponding to different

values of p. This viewpoint has to do with the existence of

a variational principle for (4'). Indeed

N(u;p) = 0

is the Euler-Lagrange equation for the extrema of the functional
1

J(u;P) = pu +.rG(x,u) dx ;

0
here p, r are given by (17b,c) and
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G(x,u) = J F(x,w) dw

where F(x,u) is defined by (7d).

Clearly the stable solutions ul (x;l), u3 (x;l) corres-

pond to local minima of J(u;l), whereas u2 (x;l) is a local

maximum. As ul(x;p), which is a minimum for y > p '

coallesces with u2(x;p), which is a maximum for > c at

P = PC , a saddle point u = u (x) obtains, whereas u3 (x;pc)

is still a minimum.

This variational interpretation makes it very plausible

that solutions u(x,t;p) of the "flow"

ut = N(u;p) , P > Ic '

with initial conditions near u.(x;p), that is at a finite

but small, rather than infinitesimal, distance from u.(x;p),

j = 1,2,3, will tend as t + o towards u. if u. is a minimum,
3 3

i.e., j = 1,3, and away from it when u. is a maximum, i.e.,

j = 2. Similarly, for p = pc , solutions starting near

u3(x;p c ) will still converge to u3 , but solutions starting

near uc(x), though they may hover for a long time near uc ,

since T1 ,T 2 - w as p - pc , will eventually move away from it,

along a negative slope of the saddle, and finally tend towards

the absolute minimum u3. This seems a rather satisfactory,

although heuristic, explanation of the results of the time-

dependent computations of Dwyer and Petersen (1973) and of

Schneider and Gal-Chen (1973), which we mentioned alreay in

Section 5.
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7. Concluding Remarks

We studied the zonally-and-vertically averaged energy-

balance climate model governed by equations (1-3); these

equations are based on simple parameterizations of albedo,

greenhouse effect and eddy diffusion of heat in terms of

yearly averaged sea-level temperature, which is the only

dependent variable of the model.

Three positive steady-state solutions of the model,

symmetric with. respect to the equator, were found by

accurate numerical computations, and apparently no more

such solutions exist. These steady states can be identified

with an interglacial climate, approximating very well the

one prevailing presently on earth, a glacial climate, and

a climate during which the earth would be completely ice

covered. The climates obtained were only slightly changed

when making small changes in the numerical values of the

coefficients and when making certain changes in the functional

form of the model's equations. However, the bounds on the

values the albedo can take were essential in order to obtain

these three climates; also linearizing the outgoing planetary

radiation resulted in a reduction of the number of solutions.

We then determined the stability of the time-dependent

'solutions of (1')under small perturbations about the model's

steady states. This stability was shown to depend on certain

properties of a comparison function, which was constructed

numerically.
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We found that the interglacial and the "deep freeze"

climate are stable, and that the glacial climate is unstable.

This means that the first two can obtain, at least approximate-

ly, as steady states in a physical system governed by equa-

tions very similar to (1-3), but that the latter cannot;

the same is true about these climates as limiting steady_

states for time-dependent numerical solutions of such

equations.

We further showed how changes in an important parameter,

the average intensity of the solar radiation, influence the

steady-state solutions of the model. The dependence on this

parameter of all steady states was shown to be gradual and

smooth for increases of up to 5% and decreases of up to

about 2%. However for a critical value of the parameter,

equal to 98.15% of its present value, the glacial and inter-

glacial climates coallesced and they disappeared entirely for

smaller values of the parameter, leaving the ice-covered earth

as the only possible stable, steady climate of the model.

This result is important, as it stresses the difference

between the stability of a steady state with respect to the

time evolution of a physical system governed by a given,

fixed equation, and the stability of a steady state with

respect to changes in a parameter, which determines the

behavior of the system. For definiteness, let us call the

former internal stability and the latter external stability;

we have shown that the "deep freeze" is stable for our system
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both internally and externally, that the glacial is unstable

in both senses, and that the interglacial, or "present

climate," is internally stable, but externally unstable.

The limitations of equations (1-3) as a model for the

description of the long-term behavior of the atmosphere-

ocean-cryosphere sys-tem, and of energy-balance models

in general, have been discussed extensively. Because of

these limitations, we believe that the results above

should not be taken at face value as statements about the

climate of our planet. These results, however, seem to

clarify the physical content and mathematical properties

of such models. Also, the methods used here could be

helpful in investigating other models, which will include

more elaborate and reliable parameterizations of the

physical phenomena governing climate. We further hope that

insight gained into the behavior of solutions of a certain

type of model will advance the formulation of other models,

and that these will come closer to explaining past changes

in climate and predicting future changes.
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Table Captions

Table 1. Empirical functions appearing in equation (4).

The functions Q, b, z are based on data in Tables 1

and 2 of Sellers (1973). The functions C, k I , k2

are based on data provided by Dr. T. Gal-Chen (1974,

personal communication), and used in the (SV) model

of Schneider and Gal-Chen (1973).

Table 2. Influence of different modifications in the model's

equation (4) on the number of steady-state solutions

and the numerical values of these solutions. The

existing solutions are identified by the temperature

at the pole, uj (0), j = 1,2,3. In case a solution is

missing, this is indicated by (-) in the corresponding

row-and-column location. S stands for the coefficients

being fitted by cubic splines, B for Bernstein poly-

nomials. A downward arrow (M) to the right of a comment

indicates that the equation used in the numerical

experiments reported in all subsequent rows had the

feature pointed out in that comment. Otherwise comments

refer only to the row in which they appear. A left

arrow, x - y, means that the quantity x was replaced

in the equation by the quantity y. The entries given

with less than five decimal digits resulted from computa-

tions with lower precision than indicated in the text.
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Table 3. Dependence of the steady states ul(x;-),u 2 (x; p) on the

normalized average intensity of the solar radiation, p.

The columns give u(O), the temperature at the pole,

&Au, the average temperature, and Au = u(l) - u(0),

the pole-to-equator temperature difference for ul and

for u respectively. The values for _c = 0.98151822

correspond to the bifurcating steady state u = u (x).
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u C Q b z k k2
1 deg 1 deg K 1 cal 102 cal 1 10-5cal deg - 1 10 - 2 cal dyn-1

-2 -1 -2 -1 m -2 -1 -1*cm deg *cm sec *cm sec * sec

0 247.3625 500 0.426
5 2.192 1204.5 0.47113 0

10 252.0740 1000 0.440
15 2.960 820.0 0.61988 0.9314
20 262.5715 1500 0.484
25 2.934 295.0 1.19933 1.9772
30 271.2980 4725 0.579
35 2.914 150.5 1.50214 3.4348
40 278.9325 5625 0.696
45 2.915 193.5 1.51063 4.8316
50 285.7530 5812 0.804
55 2.868 301.0 1.69562 3.7359
60 291.4090 5813 0.894
65 2.821 261.0 2.02342 0.6903
70 296.0815 5625 0.961
75 2.804 133.5 3.20611 -2.5401
80 298.7815 6000 1.003
85 2.805 156.0 4.80401 -10.5975
90 1299.3510 5625 1.017

Table 1



iu3 (0) u2 (0) ul(0) Comments

168.94 223.97 247.74 S, Sellers a, full eq., k = k(x,u)

169.44 227.76 247.55 S, " k = k(x,u)

- 259.26 S, " , R= 0.61ou [u-4(u-u)],

k = k(x,u)

169.0 222.6 238.5 S, " k = k(x) +

170.0 229.75 238.04 B, "

- 229.2 238.04 B, " a f 0.85

168.0 - - S+, " m = 0 (no greenhouse

a< 0.85 + effect)

170.0 222.0 245.0 Sellers a, c2 = 0 4, m = 0.5 +

170.0 222.0 - Faegre a +, a / 0.25

170.0 222.0 255.0 a > 0.25 +

169.0 232.0 265.0 b(x) - A b(x) = 2.85881 +

- c(x,'u) *- 0 (no infrared radiation)

160.0 - - v cot - 0 (no singularity)

-5170.0 250.0 280.0 k(x,u) A &Ak(x,u(x)) E K0 = 2.2x10 
- 5

165.0 - - v cot -x 0

- - - c(x,u) - 0

-43- 247.36 - R0 = c(x,I(x))ou 4(x) = 5.63x10- 3

193.27 233.95 277.79 R0 = 0.61 au ( c(x,ui(x)) = 0.61) +

190.0 232.0 280.0 v f cot -fx -
2 2 x

197.0 249.0 295.0 Q(x) + &Q(x) = 8.333x10-3

190.0 238.0 275.0 b(x) + & b(x) + clc 2 Az(x) = 2.87334

-5192.88 232.08 276.06 k(x,u) + K' = 1.96x10

Table 2
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u(0) Auu Au

1 1 2 1 2 1 2

0.98

0.98151822 235.70000 277.66799 56.34051

0.982 236.52729 234.88088 279.38752 275.83.481 55.77861 56.66504

0.985 240.87022 231.38910 282.14639 273.08646 54.81134 56.88813

0.99 243.74295 229.55772 284.55785 270.91707 53.94044 56.89193

1.00 247.55398 227.76190 287.69906 268.60379 52.80968 56.62315

1.01 250.45869 226.83077 290.06384 267.24989 51.98363 56.15496

1.02 252.94187 225.95469 292.07316 265.95849 51.30562 55.68122

1.03 255.16237 225.11901 293.86462 264.71403 50.72267 55.22456

1.04 257.19489 224.31508 295.50286 263.50733 50.20914 54.76978

1.05 259.08295 223.54529 297.02543 262.34160 49.74993 54.32089

Table 3



Figure Captions

Figure 1

Comparison of curve fitting by (i) Bernstein poly-

nomial approximation, indicated by a dash-dot line, and by

(ii) cubic spline interpolation, indicated by a solid line.

Bernstein polynomials are not interpolatory and they are

variation diminishing, i.e., they have the property of

smoothing out the data; this results in a rather poor

approximation. Cubic splines are not variation diminishing

and they are very good approximants.

Figure la

For a very smooth function, like u(x), the two approxi-

mation procedures yield curves very close to each other.

Figure lb

For a function of large total variation, like k(x,i(x)),

the two procedures yield curves which can differ pointwise by

as much as 50 percent of the average value.

Figure 2

Nu.merically obtained values of ux(l;u 0) as a function

of u 0 = u(0).

Figure 2a

Comparison of the results for equations (7), in

which k = k(x,u), with those for equations (7'), in which

k = k(x,i(x)); the results for (7) are indicated by a solid

line, those for (7') by a dash-dot line.
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Figure 2b

Results of (7') for -1330K'< u(0) < 300 K. Notice that

as u0 = u(0) tends towards the ends of the interval,

ux(l;u 0 ) +m. The solution u4 (x), corresponding to the

negative root of this curve, u0 = -186 K, does not have a

physical significance.

Figure 3

Comparison of the solutions of (4), indicated by a solid

line, with those of (4'), indicated by a dash-dot line. The

circles indicate mesh data for u = a(x).

Figure 3a

Values of the solutions u.(x), j = 1,2,3, for (4) and

for (4'). The respective values for j = 1,3 are practically

indistinguishable, whereas for j = 2 a slight difference

exists between the solution of (4) and that of (4').

Figure 3b

d
Values of the derivatives u(x), j = 1,2,3, for (4)

and for (4'). The differences are larger than in the function

values themselves.

Figure 4

(1)The first eigenfunctions, w (x) , j = 1,2,3 , of

L. = UN(u)
a u u=u.

Figure 5

The function ux(l;u 0), obtained by integrating (7')

numerically with p = c and with different values of u0O

u0 = u(0) > 120 K.
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Figure 6

Dependence of the solutions u.(x;p), j = 1,2, on the

parameter p. The two plots for u (0), A uj are very simi-

lar; the plot for Au. = uj(1)-u.(0) is rather different,

although it exhibits the same behavior in the neighborhood

of the critical point c. The circles indicate the values

actually computed, for = e , 0.982, 0.985, 0.99, 1.00,

1.01, 1.02, 1.03, 1.04, 1.05. The letter c distinguishes

the values of the plotted quantities uj(0) , Au. , Au.

corresponding to the bifurcating solution u = u (x).

Figure 7

The bifurcating solution u = u (x). Notice that the

ice line, which corresponds to u = 273 K, is at about 450 lat.

for this solution, i.e., an ice cover extending beyond this

latitude would eventually cover the entire earth.
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and a completely ice-covered earth. We consider also models

similar to the main one studied, and determine the number of

their steady states. All the models have albedo continuously

varying with latitude and temperature, and entirely diffusive

horizontal heat transfer. The diffusion is taken to be non-

linear as well as linear.

We investigate the stability under small perturbations of

-the -main-model-'s climates-. .---A stability criterion is derived,

and its application shows that the "present climate" and the

"deep freeze" are stable, whereas the model's glacial is

unstable. A variational principle is introduced to confirm

the results of this stability analysis.

We examine the dependence of the number of steady states

and of their stability on the average solar radiation. The main

result is that for a sufficient decrease in solar radiation

(about 2 percent) the glacial and interglacial solutions

disappear, leaving the ice-covered earth as the only possible

climate.
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